学びて朽ちず
志賀敏男先生追悼集
志賀敏男先生、
ありがとうございます。
和田
章

志賀先生は東北大学の耐震工学の研究グループを率いて来られただけでなく、日本そして世界の耐震工学の進展に大きく貢献されてこられました。小生は直接の教え子ではありませんが、教科書、学会活動を通じて、多くのことを学びました。志賀先生の教示は雲の上のような存在なので、三年ほど前にお会いしたとき、和田さんが頼むって下さい。と言いまでもなく、志賀先生は雲の上のような存在なので、志賀先生が今の我々にも最も影響を与えている重要な研究は、『鉄筋コンクリート造建物の耐震性』です。

一九八八年の十勝沖地震の調査をもとに纏められた有名なグラフ（いわゆる志賀マップ）があり、一階の柱断面積（柱量Acm²）と一階の壁断面積（壁量Asm²）を乗じて求めた上部構造の全重量Wをもとに明快な説明がなされ、力係数を〇・七から〇・八程度として、単位面積あたりの建物重量を1300kg/m²に、さらに右下に示しています。
二、柱量と壁量に乗じる係数が何と何、またはαとβのように壁の方向に大きな数値が使われていることとに注目すべきと考えます。柱と壁は形が異なり、柱は棒状で壁は面状ですから、力学的な考察から壁に大きな係数が用いられるのは当然であるが、建物の設計という観点でこの係数を見ると、壁を用いると柱の場合同じように耐震力を考慮すると、壁の抵抗力は無視していますから、それぞれの方向の壁の抵抗力は同一種（等式）となります。一方、壁はその面に直交方向の抵抗力は無視していますから、それぞれの方向の壁の抵抗力は同一種（等式）となります。耐震設計では、X方向の計算とY方向の計算をします。一方、壁はその面に直交方向の抵抗力は無視していますから、それぞれの方向の壁の抵抗力は同一種（等式）となります。四十五度方向に水平力が作用する場合、柱の抵抗力は同じ値αとβであり、柱の抵抗力は無視していますから、それぞれの方向の壁の抵抗力は同一種（等式）となります。一方、壁はその面に直交方向の抵抗力は無視していますから、それぞれの方向の壁の抵抗力は同一種（等式）となります。四十五度方向の計算をします。四、壁の多い強度指向型の建物と、壁の少ない靭性指向型の建物の地震被害率を比較してみます。強度指向型は粘りがないとされ、靭性指向型は必要な耐力を持ち、設計上は震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。ある大きな都市に大地震が襲ったとき、都市全体が震度7になるわけではなく、地図上には震度の等高線が描かれる。
設計の地震用の地震動は五倍ですが、実際の地震動の強さは場所によって連続的に変化しますから、建物の被害率は設計法によって異なってくるはずです。

五つ最近では構造計算を手計算で行う人は少なくなり、鉄直荷重時の応力計算もマトリックス構造解析法を用いるようになっているかも知れません。従来の手計算では、鉄直荷重を基礎まで伝達するののは柱の役割であり、壁はその階の壁全体の重量を、梁を介さずに両側の柱に伝える程度の剛性と強度をもとても多くのせん断ひずみが生じたとしても、柱は全鉄直荷重を負担するとして大変に設計してあるため、これに対する支持力を失わなければ建物の崩壊は防げることになります。このように、手計算には手に冗長性を持たせる方法が組み込まれていたと考えます。コンクリート時代だからといって、設計している建物が正確にモデル化すれば安全な建物が設計できるわけではないとも考えられます。

六つ、鉄筋コンクリート造建物の耐震性の向上に連層耐震壁の果たす効果も大きいと思います。連層耐震壁が十分なせん断耐力を有する場合、特定層の崩壊を防ぐ効果があり、建物全体が一丸となって地震に抵抗するようになると考えます。耐震設計を行う上で考えていくこと、実際の建物の挙動が一致しない場合、この意味で、耐震壁の効用について書かせていただきましたが、最後に志賀先生が教科書の中で我々に伝えていた大切な言葉を引用させて戴きます。

「また、地震のたびに同じような被害を繰り返しているのに気づく。過去の地震の貴重な教訓を忘れず、勉強を続けることが大切だ。」

一方、地震のたびごとに、それまで知られていない新しい種類の被害が出てきている。時代の移り変わりによって、建物の性質とその環境が変わってきている。